A morphometric analysis of isolated Torpedo electric organ synaptic vesicles following stimulation.
نویسندگان
چکیده
The electric organ of Torpedo has been stimulated with 1800 pulses at 0.1 Hz to produce biochemical and morphological heterogeneity of its synaptic vesicle population. This was verified by biochemical and morphometric analyses of the synaptic vesicle population isolated by sucrose density gradient zonal separation following stimulation. Biochemical or metabolic heterogeneity was verified using 2 established criteria: the appearance of a second peak of acetylcholine (ACh) in denser fractions of the zonal gradient and a corresponding overlapping peak of incorporated radiolabelled ACh. Morphologic heterogeneity was deduced by the presence in this second peak of a subclass of synaptic vesicles having a mean diameter of 68 nm i.e., a diameter 20-25% smaller than the 90 nm subclass that represents the most prominent subclass of the intact terminal population. Despite having satisfied these 3 criteria, functionally relevant heterogeneity cannot be assumed. One reason is due to our failure to recover the 90 nm subclass of vesicle which provides the physical basis to explain the 2 ACh peaks along the gradient. Because of this, the point is raised whether the stimulation-induced ACh peak is not merely an artifact due to inadequate sampling. On the other hand, radioactive labelling of the ACh pool provides a more convincing demonstration of the existence of 2 metabolically different subclasses. We conclude that morphological heterogeneity of the ACh vesicle population has never been established and that metabolic heterogeneity, as it has been studied to date, pertains to a single-sized subclass population of vesicles measuring 68 nm in diameter.
منابع مشابه
Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles.
We have shown that a soluble, low-molecular weight, alkali-labile and oxidation-sensitive factor, prepared from the electric organ of Torpedo ocellata, induces Cap-dependent acetylcholine (ACh) release from isolated Torpedo synaptic vesicles [ 1,2]. Diverse activities of ascorbic acid in the brain have been reported [3-81. These include effects on metabolism of biogenic amines [9] and on releas...
متن کاملSynapsin I is associated with cholinergic nerve terminals in the electric organs of Torpedo, Electrophorus, and Malapterurus and copurifies with Torpedo synaptic vesicles.
Using an affinity-purified monospecific polyclonal antibody against bovine brain synapsin I, the distribution of antigenically related proteins was investigated in the electric organs of the three strongly electric fish Torpedo marmorata, Electrophorus electricus, Malapterurus electricus and in the rat diaphragm. On application of indirect fluorescein isothiocyanate-immunofluorescence and using...
متن کاملPhospholipid turnover in Torpedo marmorata electric organ during discharge in vivo.
One electric organ of anaesthetized Torpedo marmorata was stimulated through electrodes placed on the electric lobe of the brain. Nerves to the other electric organ were cut to provide an unstimulated control. Glucose 6-[32P]phosphate was injected into each organ 16h before electrical stimulation. After stimulation for 10 min at 5 Hz, the organs were removed homogenized and centrifuged on a den...
متن کاملSynaptic vesicles isolated from the electric organ of Torpedo californica and from the central nervous system of Mus musculus contain small ribonucleic acids (sRNAs)
Synaptic vesicles (SVs) are presynaptic organelles that load and release small molecule neurotransmitters at chemical synapses. In addition to classic neurotransmitters, we have demonstrated that SVs isolated from the Peripheral Nervous Systems (PNS) of the electric organ of Torpedo californica, a model cholinergic synapse, and SVs isolated from the Central Nervous System (CNS) of Mus musculus ...
متن کاملA morphometric analysis of Torpedo synaptic vesicles isolated by iso-osmotic sucrose gradient separation.
The presynaptic terminal vesicle population of Torpedo electric organ is heterogeneous in size, consisting of two prominent subpopulations that comprise 80% of the total. The use of standard iso-osmotic sucrose gradients with zonal centrifugation to isolate vesicle fractions that co-localize with the acetylcholine (ACh) peak results in the recovery of: (1) 10% of the total estimated vesicle pop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 525 1 شماره
صفحات -
تاریخ انتشار 1990